
An essential language for
declarative business rules

Lex Wedemeijer
Open University in the Netherlands

An essential language for
declarative business rules

Lex Wedemeijer
Open University in the Netherlands

An essential language for
declarative business rules

Lex Wedemeijer
Open University in the Netherlands

Agenda
• Business Rules
• Rule-engineering approach
• Language specification: steps
• Characteristics
• Discussion

Business Rules
• describe business operations in 'natural' way
• many types of rules

• ECA-rules, triggers, workflow-rules, derivation rules,
transition rules, pre- and post conditions,

• declarative rules: state-oriented, time-invariant

• novice learners

Business Rules
computer-
supported
operations

design
artifacts

business
context

languages:
• natural business jargon
• controlled / semi formal
• exact specifications
• computer lingo

Example: at the IT helpdesk

concept

• natural business jargon:
every call should get an acceptable response

• controlled language:
for every call placed_by a client there MUST be a response

that is available_for the call which is accepted_by the client

• exact specs:
(Binary Relation Algebra)

• computer lingo:
(ruleML; SWRL; PRR)

keyword

fact-type
relation

Binary Relation Algebra
• sound math
• suited to declarative rules
• non-computer lingo

main components

recorded
business

data

Data
Model

concepts
relations

atoms
tuples

Rules rulerule
violationsviolations

cardinality rules
compound rules

Business Rules
computer-
supported
operations

design
artifacts

business
context

languages:
• natural business jargon
• controlled / semi formal
• exact specifications
• computer lingo

Rule-engineering approach
computer-
supported
operations

design

Application
Software

workflow
operations

recorded
business

data

artifacts

Datamodel
specs

Business
Service

definitions

Interface
definitions

Process
specs

Business
procedures

Design
Generation

Application
Generation

Rules
Repository

business
context

Rule-engineering approach

workflow
operations

recorded
business

data

define
Data

Model





specify
the

rules





test
overall
process





test
rules

with data



Data
Model


business
context

deliver to
developers



Rules
Repository

Rule-engineering approach
language has 5 statements

define
the

Model


specify

the
rules


test

overall
process


test
rules

with data


deliver to

developers



 populate populate

 define  define

 rule  rule

 enforce  enforce

 explain  explain

Specification: step 1
O O

concept

define relation

list_symbol

 define  define

Unconstrained Conceptual Model
Structure =► structural constraints
Business Vocabulary

conceptconcept relation-name

relation

(infix notation)

Specification: step 2
O O

concept

define relation

list_symbol

 define  define

O O

cardinality_rule

compound_rule
 rule  rule

Specification: step 2 detail

list_symbol

O Ocardinality
_rule
cardinality
_rule

rule simple_constraintmust

and

berule-id relation

keyword

Specification: step 2 detail

O O

expression

relation

unary-operator

expressionexpression expression

()

binary-operatorexpression

O Ocompound
_rule
compound
_rule rule mustexpression comparator expressionrule-id

list_symbol

O Ocardinality
_rule
cardinality
_rule

rule simple_constraintmust

and

berule-id relation

keyword compound
relations

imply,
be implied

for internal
reference

Specification: step 3

O Opopulate

list_symbol

} {

list_symbol

} { concept

relation

atom

tuple
 populate populate

O O

concept

define relation

list_symbol

 define  define

O O

cardinality_rule

compound_rule
 rule  rule

Entity integrity, Referential Integrity
Rule violations emerge

Specification: step 4

O Opopulate

list_symbol

} {

list_symbol

} { concept

relation

atom

tuple
 populate populate

O O

concept

define relation

list_symbol

 define  define

O O

cardinality_rule

compound_rule
 rule  rule

O O

deferred

immediateenforce

list_symbol

rule-id enforce  enforce

Rule violations: prevent or permit
not: how to amend

Specification: any step
O O

concept

define relation

list_symbol

 define  define

O Opopulate

} {

list_symbol

} { concept

relation

atom

tuple
 populate populate

list_symbol

O O

cardinality_rule

compound_rule
 rule  rule

O O

deferred

immediateenforce

list_symbol

rule-id enforce  enforce

O Oexplain quoted_text

rule-id

concept

relation explain  explain

Characteristics
1. essential (orthogonal)
2. step-by-step
3. notations kept simple
4. compares to RuleSpeak (almost understandable)

Example: at the IT helpdesk
define [call] placed_by [client],

[response] accepted_by [client],
[response] available_for [call]

rule 1_cardinal [call] placed_by [client] must be univalent and total

rule 4_helpdesk [call] placed_by [client] must imply
[call] available_for~ [response];[response] accepted_by [client]

populate [call] placed_by [client] { thursday#1 * lex , fri#2 * kim }

populate [response] available_for [call] { reply#77 * thursday#1 }

enforce 1_cardinal immediate

enforce 4_helpdesk deferred

explain 4_helpdesk "IF a call is placed_by a client
THEN must a response be available for that call
AND that response must be accepted_by the client"

Characteristics: first findings
• 9 novice students, no prior experience in rule engineering
• compare "IT helpdesk" scripts in

rich language (Ampersand, see www.tarski.nl)
versus

essential language

First findings
compared with component-oriented language:

novice students (N=9)

XXXXX
XX

XXhas more brief and powerful
statements

XXXXXXXXXis better in avoiding conflicting
(inconsistent) statements

XXXXXX
XX

Xis simpler to check for errors

XXXXXXXXXis easier to explain to co-workers

XXXXXXXXXmay cause more confusion

XX
XX

XXXXXis better aligned to stepwise
design approach

XXX
XX

XXXXis easier to use when creating a
new rule-based design

XXX
XX

XXXXis more educational (learning
while designing)

XXXX
XXXX

Xmay be easier to learn for new
rule designers

XXXX
XXX

XXis more suitable for new rule
designers

essential
language

rich
language versus

?



..

Agenda
• Business Rules
• Rule-engineering approach
• Language specification: steps
• Characteristics
• Discussion

Thank you
IF every question has got an acceptable-answer

THEN the speaker thanks you for your attention

