e

—. CSERC13

: —
= ad” o COMPU

'er Science Education'Researc %nference
#and 5 April 2013
=3

or
declaratve ousiness rulgs

Lax Wedeamezijar
Qopezn University in tnz Netnarlands

Ar esserieal lznguzags

~

An essential language for
declarative business rules

Lex Wedemeijer
Open University in the Netherlands

Agenda

Business Rules
Rule-engineering approach
Language specification: steps
Characteristics

Discussion

Business Rules

» describe business operations in 'natural’ way

* many types of rules

« ECA-rules, triggers, workflow-rules, derivation rules,
transition rules, pre- and post conditions,

» declarative rules: state-oriented, time-invariant
* novice learners

Business Rules

artifacts |

A

languages:
* natural business jargon
 controlled / semi formal
» exact specifications
« computer lingo

Example: at the IT helpdesk

natural business jargon:
every call should get an acceptable response

controlled language: concept

for every call placed by a client there MUST be a response
that is available for the call which is accepted by the client

fact-type

exact specs: :
relation

(Binary Relation Algebra)

computer lingo:
(ruleML; SWRL; PRR)

Binary Relation Algebra

sound math

suited to declarative rules
* non-computer lingo

] rU|e el
| violations |

- >

 . recorded |
| business |
data

" Business Rules

artifacts i

A

languages:
* natural business jargon
 controlled / semi formal
 exact specifications
« computer lingo

Rule-engineering approach

business design computer-
. supported
context artifacts PR
operations
Process ...
ST specs Application
u Software
Repositor Datamodel
specs
. workflow
Business operations
procedures
Business
Service recorded
definitions business
data
Interface
definitions

Rule-engineering approach

LLED

@ workflow

operations

business

context
@ v
recorded

Model business
data

0, @ ©), @ ®

define specify test test _
Data the rules overall deliver to
Model rules with data process developers

Rule-engineering approach

define specify test test _
the the rules overall deliver to
Model rules with data process developers

Specification: step 1

@D define

O_

concept

T

define L

relation

)

relation

list symbol

|

—concept

relation-nameconcept—*

(infix notation)

Unconstrained Conceptual Model
Structure =» structural constraints
Business Vocabulary

Specification: step 2

(concept—l
@ define | O-define

L relation J

list symbol

cardinality rule

@ rule

O compound_ rule

Specification: step 2

cardinality
_rule

rule

rule-id

relation

J

list symbol

must

detall

be

simple constraint

and

Specification: step 2 detail
carcI:linaIity O-rule—rule-id L relation J must—be——zsimple constraint—7>O
_rule

list symbol and

relation
unary-operator
expression | O expression binary-operator| Y expression—x q0)
m expression m

ccr)lTepound O-rule—rule-id expression must—comparatorr—iexpression—>0

for internal imply, compound

reference be implied /. relations \

Specification: step 3

concept

T

)

@ define | O—define L relation J *O
list symbol
cardinality rule
@ rule !
O compound_ rule *O
list symbol
| - ra :] J
@) sepukic O-populate Lboncept £ atom 3 O
relation {] tuple }
list symbol

Entity integrity, Referential Integrity
Rule violations emerge

Specification: step 4

(concept—l

@D define O-define L

relation J

list symbol

cardinality rule
@ rule !
O compound_ rule
(Iist_symboi
= C 7] tom 1]
@) sepukic O-populate Lboncept £ atom 1
relation {] L tuple
list symbol
@ enforce | O-enforce I rule-id J immediater
list symbol deferred

Rule violations: prevent or permit
not. how to amend

Specification: any step

concept
@ define | O-define (relation—l O
LIist_symbolJ
cardinality rule
@ rule ;
O compound_ rule *O
list symbol
@) sepukic O-populate Lconcept I (atom %_T *O
relation {] tuple }
LIist_symbol
@ enforce | O-enforce rule-id immediate O
List_symbol— deferred
concept
© explain | O-explain relation—¥ quoted text »O

rule-id

Characteristics

essential (orthogonal)

step-by-step

notations kept simple

compares to RuleSpeak (almost understandable)

= O o

Example: at the IT helpdesk

define [call] placed by [client],
[response] accepted by [client],
[response] available for [call]

rule 1 cardinal [call] placed by [client] must be univalent and total

rule 4 helpdesk [call] placed by [client] must imply
[call] available for~ [response];[response] accepted by [client]

populate [call] placed by [client] { thursday#l * lex , fri#2 * kim }
populate [response] available for [call] { reply#77 * thursday#l }
enforce 1 cardinal Immediate

enforce 4 helpdesk deferred

explain 4 _helpdesk "IF a call 1s placed by a client
THEN must a response be available for that call
AND that response must be accepted by the client”

Characteristics: first findings

* 9 novice students, no prior experience in rule engineering
 compare "IT helpdesk" scripts in
rich language (Ampersand, see www.tarski.nl)
versus
essential language

First flndlngs@ ”

iS more suitable for new rule
designers

P

may be easier to learn for new \,/ X
rule designers
is more educational (learning XX XX
while designing) X
is easier to use when creating a XX X X XX X
new rule-based design XX
is better aligned to stepwise XX X XX XX
design approach N XX
may cause more confusion \e/ XXX /X X XX
is easier to explain to co-workers XX XX X XX XX
is simpler to check for errors X XX)/ XXX
2 ~
is better in avoiding conflicting XX X XX X X
(inconsistent) statements
has more brief and powerful XX XX X X X

statements

XX

Agenda

Business Rules
Rule-engineering approach
Language specification: steps
Characteristics

Discussion

Thank you

IF every guestion has got an acceptable-answer
THEN the speaker thanks you for your attention

