
Adding testing to Ask-Elle:
An Interactive Functional Programming

Tutor

Johan Jeuring
Joint work with Alex Gerdes, Bastiaan Heeren, Jurriën Stutterheim

Computer Science
Utrecht University and Open Universiteit Nederland

NIOC 2013, April 2013

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Learning to program

Learning to program is hard.

I Misconceptions about the syntax and semantics of a
programming language

I Analysing and creating a model of the problem that can
be implemented is difficult

I Decomposing a complex problem into smaller subproblems
requires experience

I Most compilers give poor error messages

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Programming tutors

A programming tutor supports a student when learning how to
program:

I giving hints (in varying level of detail)
I showing worked-out solutions
I reporting erroneous steps

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Challenges for programming tutors

Programming tutors are not widely used.

I Building a tutor is a substantial amount of work
I Using a tutor in a course is hard for a teacher: adapting or

extending a tutor is often very difficult or even impossible
I Having to specify feedback with each new exercise is

often a lot of work

Preferably, a programming tutor:

I supports easy specification of exercises
I automatically derives feedback and hints

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

This talk

Shows Ask-Elle, a programming tutor for Haskell, in action.

I Support developing beginners’ Haskell programs
I Add programming exercises
I Adapt feedback
I Prove correctness
I Prove incorrectness

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Outline of presentation

Motivation

Ask-Elle: demo

Feedback

Future work and conclusions

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Outline of presentation

Motivation

Ask-Elle: demo

Feedback

Future work and conclusions

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Ask-Elle: A programming tutor for Haskell

We are developing Ask-Elle: a programming tutor for Haskell.
Using the tutor, a student can:

I develop her program incrementally
I receive feedback about whether or not she is on the right

track
I can ask for a hint when she is stuck
I see how a complete program is stepwise constructed

A teacher specifies an exercise by means of model solutions.

The tutor targets first-year computer science students.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

?

Tutor response on Hint:
There are several ways you can proceed:
I Introduce a helper function that uses an accumulating

parameter.
I Use the Prelude function foldl.
I Use explicit recursion.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ ?
where

reverse ′ acc ? = ?

Tutor response on Hint:

Apply reverse ′ to [], or use pattern matching for the second
argument of reverse ′, or refine the right-hand side of reverse’.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = ?

Tutor response on Hint:
Refine the right hand side of the empty list case.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = []

Tutor response on Check:
Unexpected step, which may be incorrect.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc

Tutor response on Hint:

Define the non-empty list case of reverse ′

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = ?

Tutor response on Hint:

Define the recursive call of reverse ′

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = reverse ′ (y : acc) ?

Tutor response on Check:

Error: Undefined variable y

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

An example interactive session

Programming task: write a program that reverses a list:

reverse = reverse ′ []
where

reverse ′ acc [] = acc
reverse ′ acc (x : xs) = reverse ′ (x : acc) xs

Tutor response on Check:
You have correctly solved the exercise.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Outline of presentation

Motivation

Ask-Elle: demo

Feedback

Future work and conclusions

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

What kind of feedback?

I Syntax or type error
I Correct step
I Coming soon: violates the following property: ...
I Hint, in increasing detail
I Solved

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Model solutions for reverse

The tutor derives feedback from model solutions.

reverse1 [] = []

reverse1 (x : xs) = reverse1 xs ++ [x]

reverse2 = reverse ′2 []

where reverse ′2 acc [] = acc
reverse ′2 acc (x : xs) = reverse ′2 (x : acc) xs

reverse3 = foldl (flip (:)) []

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Adapting feedback

A teacher fine-tunes feedback by annotating a model solution.

reverse = foldl {-# FEEDBACK Note ... #-} (flip (:)) []

A teacher disallows or enforces a particular solution by:

reverse = {-# MUSTUSE #-} foldl (flip (:)) []

Furthermore, we can add a property to a function, and use
that to recognize student solutions:

reverse =
{-# ALT foldl op e == foldr (flip op) e . reverse #-}

foldl (flip (:)) []

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Correctness

I Using annotated model solutions we can prove that a
student solution is (partially) correct

I Compare (possibly partial) student solution with model
solution after normalisations

I We can give hints, and show worked-out solutions
I We cannot say anything about incorrect or different

solutions

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Meta information for reverse

Besides model solutions, we store meta information about
reverse in a configuration file:

function = reverse
type = [a] → [a]
groups = programming.FP
property = (λxs → whenFail

"reverse does not reverse a list"
(reverse xs ≡ reverse1 xs)

)

property is the standard property:

programstudent ≡ programmodel

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Testing

I We use QuickCheck to test a property of a function.
I QuickCheck generates random values for which it tests

the validity of a property.
I If QuickCheck finds a counterexample, it tries to shrink it

to return a counterexample that is as small as possible.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Testing example

For the following erroneous student solution

reverse = reverse ′ []
where reverse ′ acc [] = []

reverse ′ acc (x : xs) = reverse ′ (x : acc) xs

QuickCheck gives:

quickCheck property
Falsifiable, after 3 tests :
"reverse does not reverse a list"
"counterexample: " [1]

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

More informative properties for testing

property = λx → prop_lengthatmost x
.&&. prop_lengthatleast x

prop_lengthatmost
= λxs → whenFail

"reverse duplicates list elements"
(length (reverse xs) 6 length xs)

prop_lengthatleast
= λxs → whenFail

"reverse throws away list elements"
(length (reverse xs) > length xs)

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Testing example revisited

For the following erroneous student solution

reverse = reverse ′ []
where reverse ′ acc [] = []

reverse ′ acc (x : xs) = reverse ′ (x : acc) xs

QuickCheck gives:

quickCheck property
Falsifiable, after 3 tests :
"reverse throws away list elements"
"counterexample: " [1]

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Incorrectness

I Using testing we can prove that a student solution is
incorrect

I We cannot say anything about correct solutions

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Why not only do testing?

fromBin converts a list of binary numbers to its decimal
representation:

fromBin [1, 0, 1, 0, 1, 0]⇒ 42

A solution:

fromBin :: [Int] → Int
fromBin = fromBin ′ 2

fromBin ′ n [] = 0
fromBin ′ n (x : xs) = x ∗ n ∧ (length (x : xs) − 1)

+ fromBin ′ n xs

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Why not only do testing?

This solution satisfies the expected properties, but it contains
a number of (serious) imperfections:

I The length calculation is inefficient
I It takes time quadratic in the size of the input list
I Argument n is constant and should be abstracted

These imperfections occur frequently in student solutions.

fromBin :: [Int] → Int
fromBin = fromBin ′ 2

fromBin ′ n [] = 0
fromBin ′ n (x : xs) = x ∗ n ∧ (length (x : xs) − 1)

+ fromBin ′ n xs

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Outline of presentation

Motivation

Ask-Elle: demo

Feedback

Future work and conclusions

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Where is the error?

I Using QuickCheck we can generate counterexamples for
erroneous solutions

I But where is the error?
I Interpret a property as a contract
I Infer contracts for components
I Determine contract violations using the counterexample

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Testing example revisited

reverse satisfies the contract:

λxs → length (reverse xs) ≡ length xs

For the erroneous solution

reverse = reverse ′ []
where reverse ′ acc [] = []

reverse ′ acc (x : xs) = reverse ′ (x : acc) xs

we might infer that reverse ′ satisfies the contract

λxs → length (reverse ′ xs ys) ≡ length xs + length ys

Using the inferred contract, we can show that the first line of
reverse ′ violates the contract.

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Normalisation

range1 x y = if x ≡ y then [x] else x : range1 (x + 1) y
range2 x y = if y ≡ x then [x] else x : range2 (x + 1) y
range3 x y = if x 6≡ y then x : range3 (x + 1) y else [x]
range4 x y = if y 6≡ x then x : range4 (x + 1) y else [x]
range5 x y = if x 6≡ y then x : range5 (1 + x) y else [x]

-- and the 3 variants
range6 x = λy → if x ≡ y then [x] else x : range6 (x + 1) y

-- and the 7 variants
range7 = λx → λy → if x ≡ y

then [x]
else x : range7 (x + 1) y

-- and the 7 variants

[NIOC 2013: Adding testing to Ask-Elle – An Interactive Functional Programming Tutor]

Conclusions

I Ask-Elle is a programming tutor for Haskell with advanced
feedback functionality: both for correctness and
incorrectness

I Easy to add and adapt programming exercises

I J.T.Jeuring@uu.nl
I General information:

http://ideas.cs.uu.nl/
I Experiment on-line:

http://ideas.cs.uu.nl/ProgTutor/
I Sources:

http://ideas.cs.uu.nl/trac/wiki/Download

mailto:J.T.Jeuring@uu.nl
http://ideas.cs.uu.nl/
http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/trac/wiki/Download

	Motivation
	Ask-Elle: demo
	Feedback
	Future work and conclusions

